Camelot

EVALUATION KIT (EVK)

APl REFERENCE MANUAL

©Copyright©lmaging Diagnostics 2009

This manual is copyrighted. All rights are reserved and no part of this publication may
be reproduced or transmitted in any form or by any means without prior written consent.
Disclaimer

The information in this manual was accurate and reliable at the time of its release. However, we
reserve the right to change the specifications of the product described in this manual without
notice at any time.

Registered Trademarks

All other proprietary names mentioned in this manual are the trademarks of their respective
owners.

Print Version B10
October 2009

CONTENTS

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

CHAPTER 5.

CHAPTER 6.

P REFACE. ... e e e eanas 11
ADOUTL thisS DOCUMENT ...c.uiiiiiiiii e e e iii
L= Lo 1= A AN B Lo [1=T o o= PP iii
AboUt this APPLICATIONiieiiii e e iii
Important INFOrmMationocuiiiiiii e iii
[[01VAY A 0 T O 0] o 1 = Tod u U= iii

INTRODUCTION ..ottt et e e et et e e et et e e e e e eeens 1
Referenced DOCUMENTS.cuuiii et e e e e e et e e e eaas 1
Links tO MiCron Data SNEETS ...ttt e aeas 1

APl COMMAND SUMMARY TABLE ... e 2

UPGRADING THE TO THE LATEST VERSION ..ot 6

INITIALIZING AND RUNNING THE CAMERA ... 7
) K OF= T 1T - 7
LU0 [OF= T [T = PPN 7
1 (81D} V1Y [OF= T [=T - PP 8
Y 0] o0 T o' =] - U PN 8
IS 0] 00T V= s 8
(O3 [11T OF=T 0 =T o= S 9
L] = 1 1 PPN 9
L6 0] L | o S 9

ACCESSING THE CAMERA AND PARAMETERS ..o 10
(1T oY= TS o] gl IV o L= 10
GetCameraVersionINTO ... 10
LT (07T g 01> T 01 11
(€T =T 0 =] N [T o PPN 11
LT T 11
LT o] = > 12
€T 1T (o o 1 - | 12
SetFliPHONIZONTAL ... o 12
GetFlIpVeErtiCal.o e 12
Y=t 110 XYY o T | 13
1=y A 0] =1 £ o] o PO PP 13
LG Y SCaAlE ..t et eas 13
SO G Y S CaAlE ..t anaas 13
CaptureRAWIMAgE ... s 14
(0T o 1 LU == 1V 14
Setting and Getting the Gain values..........ccooiviiiiiiiiii e 14
L= (7= 11 a1 1/ 0 T 14
Y= (= 11 1 1Y/ 0 = 15
EXPOSUIE TIMIE ..iuiiiiii ittt et et e et e e e et e ea e e aen 15
7<) 5] UL =T 0= - 15
Y= 5] LU 1 = 19 = 16
GetShUTtErWIALN ... e 16
SetShULEErWIAEN .. 16
Understanding the Camera Resolution TYPEScvvviiiiiiiiiiiiiiicinieeeeeeee e 16
(€T =TS0] [1 o] o PP 17
1=y AR LCETo] 11 1 o] o H TP 17
GetCaptureRESOIUTION et et et e e e e e eaaneas 17
Y= (=T o 18 =T = LS Yo] 111 o] o 18
Setting ROI (Region of Interest) and FOV (Frame of View)c...c..cceeeunee. 18

Contents

LT LYo T o 18
SEEREGION .. e e e 18
LT Y 19
S T=] R 1 PP 19
27T o1 11 o T R PPN 19
LY== T T 10 Vo 19
Y= (=T o 1 =1 0 o 1T 20
SNAPSNOT IMOTEcei e ees 20
L Y =T ST T= 10 15T T 1 11T Yo = 20
LTS 5] =T 0 1] o | 20
CHAPTER 7. ADVANCED API FUNCTIONS ...ttt e e e e e e 21
LT 0T 1= L= 21
LU0 [0 = o |05 22
ST =T W =TT o D 2= L = PP 23
Y= = L =T =T 1 PP 24
SetRaWFrameDataCB ... e 24
SetRAWFUIFIAMECBt ettt ettt eaneaes 24
SetRGBFrameDataCB ... 25
ST 1 1= U 25
1=y AV 1 T 1= TP 25
SEtGEtRAWFUIIDALAttt ettt e e 26
(€= {1 o [PP 27
SO G P IO et 27
EnableSensorLight ... 28
o U 1S3 [To = 28
Y= o ot o Yo 1T L= I 0 R 28
(01 g T=T ot 1 I =To £ PP 29
(7= o X0 o PPN 29
GetREGVAL ... e 29
SEEREGVAL. .. e 30
CHAPTER 8. USING DEBUGPRINT ...ttt e e e e e e e e 31
[0 T o T T | = 31

PREFACE

About this Document

This document is the Camelot camera Evaluation Kit (EVK) API.

Target Audience

This document is meant for application programmers to integrate the Camelot
series cameras into 3™ party applications.

About this Application

This application is based on DirectShow filters - compiled and run using Microsoft
Visual Studio 2005.

The BDR Sample Application was written to demonstrate to programmers how to
build applications using the BECFilter.ax functional API.

This API gives the programmer full control over the Camelot series.

Important Information

Important information is shown as notes.

How to Contact Us

Website
http://www.imagine2d.com/

Support
support@imagine2d.com

Sales
sales@imagine2d.com

Chapter 1

INTRODUCTION

Camelot is a family of digital cameras for machine vision applications. Using a
fast USB2 connection and an embedded digital signal processor, Camelot
cameras are capable of performing advanced image processing algorithms in the
camera and buffering images internally; this decreases the camera/host
bandwidth requirement significantly. The cameras are intended for medical and
industrial applications requiring superior image quality and high performance.

IMPORTANT NOTE

We periodically update this software application with new commands.
You can download the latest version of the software from our website.

See Upgrading the to the Latest Version on page 6.

Downloads Contain:

@ BECFilter.ax — a DirectShow filter containing functions that

access and communicate with the camera - this file must be

placed in the C:\Windows\System32 folder

Where: C:\ is your system disk drive

CamelotSample.exe — the SampleApplication executable
CamelotSampleCode.zip — contains the latest update sources
Camelot_XXX.ldr — is the loader file with the new code for the camera. This
file must be loaded using the example application UpdateFW or by calling the
API function and supplying the path to the file

Referenced Documents

This document references the data-sheets for all the digital image sensors listed
below. The PDF version can be downloaded from the Micron website:

Data Sheet Name Digital Image Sensor Size ‘
Micron MTOMOO1C12STM 1.3 Megapixels

Micron MT9TO3P12STC 3-Megapixels

Micron MT9P031i12STC 5-Megapixels

Micron MTONOO1i12STC 9-Megapixels

MICRON MT9V024iA7XTC Wide VGA

Sensor

Link

1.3 http://www.aptina.com/products/image_sensors/mt9m001c12stm/

3 http://www.aptina.com/products/image_sensors/mt9t031pl2stc/#overview
5 http://www.aptina.com/products/image_sensors/mt9p031il2stc/#overview
9 http://www.aptina.com/products/image_sensors/mt9n001i12stc/

WVGA http://www.aptina.com/products/image_sensors/mt9v024ia7xtc/#overview

Chapter 2

APl COMMAND SUMMARY TABLE

AdjustFlicker

CaptureBMP

CaptureRawlmage

CheckLeds

CloseCamera

DebugPrint

EnableSensorLight

EnterSnapShotMode

GetCamCaps

GetCameraVersionlnfo

GetCaptureResolution

GetFlipHorizontal

GetFlipVertical
GetFPS

GetFPSrate

GetFrameNum

GetGainType

Adjusts the Shutter Width in order to avoid the 50Hz or 60Hz
flicker experienced when using indoor lighting.

Captures the next frame from the camera and saves it as a BMP
image (RGB24).

Captures the next frame from the camera and saves it as a
RAW, GBRG Bayer image.

Checks whether the three external LEDs, Red, Green and Blue
(optionally provided with the camera) are functioning.

Closes all connections to the selected camera and releases all
buffers used for video capture.

Prints a message to a debug window (if open) while in DEBUG
mode.

Turns on LEDs on the Sensor board. These can be optionally
supplied with the camera. If Flash option is enabled when
Snapshot is chosen, the LEDs light whenever a snapshot is
taken.

Enters or leaves Snapshot mode. When in SnapshotMode the
camera stops capturing and streaming video until a trigger is
set.

Returns a structure containing some of the camera’s capabilities.
When this function is called, the camera is initialized and
connection is established with the PC.

Gets the camera’s version numbers — HW, FW and others.
Returns the current resolution of the camera’s output.
Returns whether the picture is flipped horizontally.
Returns whether the picture is flipped vertically.

Outputs the FPS (frames per second) of the selected camera.
This is a dynamically changing statistic and depends on camera
resolution, shutter width, gain and binning.

Outputs the Bit Rate of the selected camera. This is a
dynamically changing statistic and depends on camera
resolution, shutter width, gain and binning.

Outputs the current frame number being captured from the
camera. This is a sequential number that starts at O (zero) every
time the camera is reinitialized.

Returns the sensor gain according to the type queried. See
Setting and Getting the Gain values on page 14 for explanation
of values.

Camelot Cameras - API

Chapter 2 - APl Command Summary Table

GetGPIO

GetGreyScale
GetlLogs

GetRegion

GetRegVal
GetResolution

GetSensorType

GetShutterDelay

GetShutterWidth

GetSnapShot

GetView

InitCamera

OnPause

OnRun

RunCamera

SetBinning

SetCapBinning

SetCaptureResolution
SetDataCBPtr

SetExposureTime

Gets the current state and values of the 4 GPIO (general
purpose input/output) pins that are reserved for your use. These
pins can either be an input or an output, which means they
either read a value from the camera, or set a value into the
camera. Cameras can be optionally wired so that these GPIO
pins can turn on/off a circuit or transmit info from the camera.

Returns whether the picture is shown in greyscale.

Gets log messages saved in the camera and used for debugging
purposes. These messages are sent to a separate DebugPrint
screen that can optionally be used to debug applications.

Gets the coordinates of the region (ROl — Region of Interest)
programmed in the registers of the camera.

Returns value of specified register.
Returns the current resolution of the Preview screen.

Returns the type of Micron sensor present in the camera. The
type may be 1.3, 3, 5 or 9 Megapixel sensor according to the
table below.

Returns the sensor shutter delay. This value is used for
controlling Exposure time and to avoid any 50Hz or 60Hz flicker.

Sets the sensor shutter width. This value controls the time taken
between each new frame capture. If in AdjustFlicker mode the
value supplied is adjusted to the next highest value to avoid any
50/60Hz flicker.

Imitates the optional external trigger and instructs the camera
to capture one frame and send it to the PC.

Gets the coordinates of the FOV (Frame of View) displayed on
the PC.

Initializes the DirectShow filters needed to run the
SampleApplication. Within the function, once the pFilter is
instantiated, the camera is initialized and ready for commands.
Commands are sent using the piBDR interface.

Pauses the selected camera that is running. OnRun() restarts it.

Starts the selected camera that has been either paused or
stopped. If the camera wasn’t initialized, it is initialized and then
started.

Starts a camera that has already been initialized. When called,
video is streamed from the camera and displayed in a separate
Preview window.

Sets whether binning should be used for preview (if HALF or
QUARTER resolution is selected).

[This option is not yet supported]

Sets whether binning should be used by the sensor for video
output (if HALF or QUARTER resolutions is selected).

Sets the resolution used for the camera’s output.

Sets the callback function that is called every time a new frame
is received, if specified.

Sets the exposure time (in milliseconds) for each frame. If the
value given is lower than the camera can operate at, the camera
operates at its minimum exposure time.

3

Camelot Cameras - API

Chapter 2 - APl Command Summary Table

SetFlipHorizontal

SetFlipVertical
SetGainType

SetGetRawFullData

SetGPI1O

SetGreyScale
SetPlIRate

SetPwmTimer

SetRawFrameDataCB

SetRawFullFrameCB

SetRegion

SetRegVal
SetResolution

SetRGBFrameDataCB

SetRotation

SetShutterDelay

SetShutterWidth

Sets whether the picture should be flipped horizontally.
Sets whether the picture should be flipped vertically.

Sets sensor’s gain according to the type specified. See Setting
and Getting the Gain values on page 14.

Sets mode for getting RAW frames. For 5Mp camera only: If a
12-bit RAW frame is required, put the camera into 48MHz mode
(using the SetPlIRate function) before requesting the RAW
frame.

Sets the current state and values of the 4 GPIO (general purpose
input/output) pins that are reserved for the user. These pins
can either be an input or an output — which means they either
read a value from the camera, or set a value. Cameras can be
optionally wired so that these GPIO pins can turn on/off a circuit
or transmit info from the camera.

Sets whether the picture should be shown using greyscale.

Sets the camera’s PLL (internal clock) rate.

Default: 96MHz.

This option is not supported by the 1.3Mp and the 3Mp models.
Before uploading and using a LUT with 12-bit streaming, the 5Mp
camera must be set to 48MHz. Also, if a RAW frame is to be captured
with 12-bit data, change the camera PLL rate to 48MHz before frame
capture.

Sets three PWM (pulse width modulation) timers which you can
attach to peripherals (LEDs, etc.) that need PWM controlled
current source. The period is the overall cycle, while the width is
the duration of the period (duty cycle) where the signal is low.
The width must be less than the period for each timer. The
timers (TMR1, TMR2 and TMR3) are started simultaneously and
therefore synchronized.

Sets whether a callback function should be called for each raw
frame is received.

Sets whether a callback function should be called for each raw
Full frame received (as a result of the SetGetRawFullData
function on page 26).

Sets the region (ROI - Region of Interest) to be output by the
camera.

Sets specified register value.
Sets the resolution used for the Preview screen. The FULL

parameter (0) gives the maximum sensor output from the
camera. All other resolutions are subsets of this FULL output.

Sets whether a callback function should be called after each raw
frame has been processed into an RGB frame.

Sets the angle in degrees (0, 90, 180 and 270) for rotating the
image.

Sets the sensor shutter delay This value is used for controlling
exposure time and to avoid any 50Hz or 60Hz flicker.

Sets the sensor shutter width This value controls the sensor
delay time between each new frame capture.

Camelot Cameras - API

Chapter 2 - APl Command Summary Table

SetTestData

SetView

ShutDownCamera

StopCamera

StopDriver

UpdateFW
UploadLUT

Specifies whether the camera should output set Test Data or regular
video images. This is an option provided for developers to check
whether the data received is actually the data sent and other sensor
independent features.

1.3Mp and 3Mp cameras have only 1 option — to choose a value
which will be output for even columns, and its complement value
- for odd columns. For example, 0x12 becomes OXED.

For 5Mp cameras this is type=4 and you can create patterns and
change the RGB values.

Sets the FOV (Field of View) to be displayed on the PC

Stops camera and tears down the DirectShow filter graph. Calls API
functions StopDriver and CloseCamera.

Stops a camera that is running, but keeps it initialized. Calls API
function StopDriver.

Stops the selected camera’s driver. Camera stops outputting
video and enters a waiting for command mode.

Updates the camera Firmware.

Uploads a look-up table (LUT) for translating raw pixel values in
the camera before being outputted. The LUT can translate from
8-bit, 10-bit or 12-bit data to 8-bit, 10-bit or 12-bit output. In
this version only translations to 8-bit data are supported, which
is transmitted in the output. Once a LUT is loaded, the camera
uses it to translate all outgoing frames.

After the LUT is successfully loaded, the SampleApplication
must reinitialize the camera and run it.

Chapter 3

UPGRADING THE TO THE LATEST VERSION

After you have installed the software from the Installation CD you must visit our
website http://www.imagine2d.com/ and download and install the latest
version of both the software and camera firmware currently available.

1. Download the latest version of the software from
http://www.imagine2d.com/

W R Y

Imaging Diagnostics
Total vision solutions
About Product Applications Suppot Contac 1
e Studies
et Capture
Rosources Smart cameras to fit any need

Press Helsase

Blag Fead

Giving Vision to your products.

2. Click the Support tab.

About us Products Applications Suppon Contact

3. From the menu, click Downloads.
Download the latest version of the Camelot software and install it.

Upload the new firmware to the camera using the current/old working
SampleApplication (NOT the file you just downloaded).

When the firmware upload is successfully completed, remove the USN cable.

Copy the BECfilter.ax file into the folder C:\Windows\system32
Where: C:\ is the system disk.

8. Reconnect the camera and run the NEW SampleApplication file.

Chapter 4

INITIALIZING AND RUNNING THE CAMERA

This section describes the API commands for initializing and running the camera.

Main Dialog module function calls — for BDR_SampleCodeDlIg.cpp.

These functions, based on DirectShow filter graphs, are used to run, pause and
stop the camera.

InitCamera

Description Initializes the DirectShow filters needed to run the SampleApplication. Within
the function, once the pFilter is instantiated, the camera is initialized and ready
for commands. Commands are sent using the piBDR interface.

All of the commands in this API invoked using the following syntax:
piBDR[camNum]->Command(parameters)

The application enables initializing up to 10 cameras. Each camera has a number
according to its place in the List Control displayed on the Main screen.

Syntax InitCamera(int a_nCamNum, bool *CameraFound)
Parameters

Input a_nCamNum Camera number

Output CameraFound Whether a camera was found
Return Values None Success

RunCamera
Description Starts a camera that has already been initialized. When called, video is streamed
from the camera and displayed in a separate Preview window.

Syntax RunCamera(int a_nCamNum)
Parameters

Input a_nCamNum Camera number

Output None
Return Values true succeeded

false Failed

Camelot Cameras - API Chapter 4 - Initializing and Running the Camera

ShutDownCamera

Description

Stops camera and tears down the DirectShow filter graph. Calls API functions
StopDriver and CloseCamera.

Syntax ShutDownCamera(int a_nCamNum)
Parameters
Input a_nCamNum Camera number
Output None
Return Values None
StopCamera

Description

Syntax

Parameters
Input
Output

Return Values

Stops a camera that is running, but keeps it initialized. Calls API function
StopDriver.

StopCamera(int a_nCamNum)

a_nCamNum Camera number

None

None

StopDriver

Description

Syntax

Parameters
Input
Output

Stops the selected camera’s driver. Camera stops outputting video and enters a
waiting for command mode.

StopDriver()

None

None

Camelot Cameras - API

Chapter 4 - Initializing and Running the Camera

CloseCamera

Description

Syntax

Parameters
Input
Output

OnPause

Description

Syntax

Parameters
Input
Output

Return Values

OnRun

Description

Syntax

Parameters
Input
Output

Return Values

Closes all connections to the selected camera and releases all buffers used for video
capture.

CloseCamera()

None

None

Pauses the selected camera that is running. OnRun() restarts it.
OnPause()

None
None

None

Starts the selected camera that has been either paused or stopped. If the camera
wasn’t initialized, it is initialized and then started.

OnRun(Q)

None
None

None

Chapter 5

Accessing the Camera and Parameters

All of the commands in this API are invoked with the following syntax
piBDR[camNum]->Command(parameters)

Most of these function calls are used in the Sample Application.

GetSensorType
Description Returns the type of Micron sensor present in the camera. The type may be 1.3, 3, 5
or 9 Megapixel sensor according to the table below.
Syntax GetSensorType (int *pnSensorType)
Parameters
Input None
Output pnSensorType SENSOR_UNKNOWN O
SENSOR_WVGA 3 1.3 Megapixel
SENSOR_1300 13 3 Megapixel
SENSOR_3000 30 5 Megapixel
SENSOR_5000 50 9 Megapixel
SENSOR_9000 90

GetCameraVersionlnfo

Description Gets the camera’s version numbers — HW, FW and others.
Syntax GetCameraVersionlnfo(char *versionlnfo)
Parameters
Input None
Output versionlnfo A string of up to 495 characters describing camera HW

version, FW version and dates as well as other details.

Return Values None

10

Camelot Cameras - API

Chapter 5 - Accessing the Camera and Parameters

GetCamCaps

Description

Syntax

Parameters
Input
Output

Returns a structure containing some of the camera’s capabilities. When this
function is called, the camera is initialized and connection is established
with the PC.

Gets the camera’s version numbers — HW, FW and others.

None

CAMERA_CAP_API struct which is defined as:
unsigned int SensorType; // see GetSensorType
char Desc[SENSOR_DESC_LEN];
unsigned int CameralD; // serial number
unsigned iInt FirmwareVersion; // n.a.
unsigned int HardwareVersion; // n.a.
unsigned iInt Width; // maximum width
unsigned int Height; // maximum height
unsigned iInt ActiveStartX; // x column start

unsigned int ActiveStartY; // y row start

CameraCap

GetFrameNum

Description

Syntax

Parameters
Input
Output

GetFPS

Description

Syntax

Parameters
Input
Output

Outputs the current frame number being captured from the camera. This is a
sequential number that starts at O (zero) every time the camera is reinitialized.

unsigned long GetFrameNum(void)

None

Frame number Current frame number captured. Frame numbers are given

to each frame captured by the camera.

Outputs the FPS (frames per second) of the selected camera. This is a dynamically
changing statistic and depends on camera resolution, shutter width, gain and
binning.

GetFPS(float *pFPS, float *pSkipPS, float *pDisplayPS)

None

pFPS How many FPS captured by DirectShow filter

pSkipPS How many FPS were skipped by filter (couldn’t be buffered)
Total FPS output of camera = pSKipPS + pFPS

pDisplayPS How many FPS displayed on PC Preview screen

11

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

GetFPSrate

Description

Syntax

Parameters
Input
Output

Outputs the Bit Rate of the selected camera. This is a dynamically changing statistic
and depends on camera resolution, shutter width, gain and binning.

GetFPSrate(float *pFPS, float *pDisplayPS)

None
pFPS How many MegaBits/sec captured by DirectShow filter
pDisplayPS How many MegaBits/sec displayed on PC Preview screen

GetFlipHorizontal

Description

Syntax

Parameters
Input
Output

Returns whether the picture is flipped horizontally.

GetFlipHorizontal (bool *pbFlipHorizontal)

None

pbFlipHorizontal true = picture is flipped horizontally
false = picture isn’t flipped horizontally

SetFlipHorizontal

Description
Syntax
Parameters

Input

Output

Sets whether the picture should be flipped horizontally.
SetFlipHorizontal (bool bFlipHorizontal)

bFlipHorizontal true = flip the picture horizontally
false = don’t flip the picture horizontally

None

GetFlipVertical

Description

Syntax

Parameters
Input
Output

Returns whether the picture is flipped vertically.
GetFlipVertical (bool *pbFlipVertical)

None

pbFlipVertical true = picture is flipped vertically
false = picture isn’t flipped vertically

12

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

SetFlipVertical

Description
Syntax
Parameters

Input

Output

Sets whether the picture should be flipped vertically.
SetFlipVertical (bool bFlipVertical)

bFlipVertical true = flip the picture vertically
false = don’t flip the picture vertically
None

SetRotation

Description

Sets the angle in degrees (0, 90, 180 and 270) for rotating the image.

Syntax SetRotation(int nRotation)
Parameters
Input nRotation DON”T ROTATE = O,
90 //currently unsupported
180,
270 //currently unsupported
Output None
Return Values None
GetGreyScale
Description Returns whether the picture is shown in greyscale.
Syntax GetGreyScale(bool *pbGreyScale)
Parameters
Input None
Output pbGreyScale true = picture is in greyscale

false = picture is shown in color

SetGreyScale

Description
Syntax
Parameters

Input

Output

Sets whether the picture should be shown using greyscale.
SetGreyScale(bool bGreyScale)

bGreyScale true = show picture in greyscale
false = show picture in color

None

13

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

CaptureRawlmage
Description Captures the next frame from the camera and saves it as a RAW, GBRG Bayer
image.
Syntax CaptureRawlmage(char* a_sFileName)
Parameters
Input a_sFileName Valid file name — does not have to exist.

If exists, is overwritten.

Output None

CaptureBMP
Description Captures the next frame from the camera and saves it as a BMP image (RGB24).
Syntax CaptureBMP(char* a_sFileName)
Parameters
Input a_sFileName Valid file name — does not have to exist.

If exists, is overwritten.

Output None

Setting and Getting the Gain values

The gain values have been normalized to the range 0-1024.
All values from 0-64 relate to the analog gain, where:
@ O - 32 are “real” gains of 0.0 — 4.0

@ 33 - 64 are “real” gains of 4.25 — 8.00
Values from 65 — 1024 translate as follows;

@ in 1.3Mp cameras — 65-120 are analog gains of 9-15 (values over 120 are
ignored)

For other cameras, 65 — 1024 are digital gains.

GetGainType
Description Returns the sensor gain according to the type queried. See Setting and Getting the
Gain values on page 14 for explanation of values.
Syntax GetGainType(int type, Int *pnGain)
Parameters
Input Type RED 0

GREEN 1
BLUE 2
GLOBAL 3 // not defined

Output pnGain Returned gain in range 0 - 1024

14

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

SetGal

Description

Syntax
Parameters

Input

nType

Sets sensor’s gain according to the type specified. See Setting and Getting the Gain
values on page 14.

SetGainType(int type, int nGain)

Type RED 0

GREEN 1

BLUE 2

GLOBAL 3 // sets R, G, and B gains
nGain Value of gain — range 0 — 1024. See above for short

explanation of analog/digital gains.

Output None

Exposu

re Time

The Exposure time is the reset time of each pixel row subtracted from the
sample time. It is the amount of time required until a new row is available.
Exposure time is a function of the camera PIXCLK (pixel clock), shutter width,
shutter delay, frame width and binning. Exposure time is calculated per row, and
is displayed on the Main screen. Except for the WVGA sensor (described below)
all the Camelot series cameras use a rolling shutter. Rolling shutters cannot
freeze moving objects as well as a global shutter can.

For more information refer to the datasheets of each specific sensor.
See Referenced Documents on page 1.

The global shutter feature of the WVGA image sensor is able to freeze moving
objects as all pixels are exposed simultaneously. When using a global shutter all
pixels start being exposed (integrating charge) simultaneously and stop being
exposed simultaneously and a new exposure only begins after the readout of all
of the pixels is completed.

GetShutterDelay

Description

Syntax
Parameters

Input

Returns the sensor shutter delay. This value is used for controlling Exposure time
and to avoid any 50Hz or 60Hz flicker.

GetShutterDelay(int *pnShutterDelay)

None

Output pnShutterDelay Returned shutter delay — values are in range from 0 — 2,047

15

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

SetShutterDelay

Description Sets the sensor shutter delay This value is used for controlling exposure time and
to avoid any 50Hz or 60Hz flicker.

Syntax SetShutterDelay(int nShutterDelay)

Parameters

Input nShutterDelay Valid values from 0 — 2,047

Output None

GetShutterWidth

Description Sets the sensor shutter width. This value controls the time taken between each new
frame capture. If in AdjustFlicker mode the value supplied is adjusted to the next
highest value to avoid any 50/60Hz flicker.

Syntax GetShutterWidth(int *pnShutterWidth)
Parameters
Input None
Output pnShutterWidth Returned shutter width — values are in range from
1-10,000
SetShutterwidth
Description Sets the sensor shutter width This value controls the sensor delay time between
each new frame capture.
Syntax SetShutterWidth(int nShutterWidth)
Parameters

Input nShutterWidth Valid values from 1-10,000

Output None

Understanding the Camera Resolution Types
In this application we relate to two resolution types:

1. Resolution of the camera output or capture resolution.
a. FULL - the camera outputs frames at maximum width and height.

b. HALF - the camera outputs frames at HALF width and HALF height of the
FULL sized frame. That means that HALF frames are really 1/4 the size
(in bytes) of FULL frames.

c. QUARTER — the camera is outputting frames at 1/16 the size of a FULL
frame, since every three rows and every 3 columns are skipped.

2. Resolution of the Preview screen on the PC.

a. FULL - what is received from the camera is displayed at the same
dimensions.

b. HALF - in preview means that only 1/4 of the pixels coming from the
camera are displayed, since every alternate row and column is skipped.

c. QUARTER - only 1/16 of the pixels received from the camera are
displayed.

16

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

GetResolution

Description

Syntax

Parameters
Input
Output

Returns the current resolution of the Preview screen.

GetResolution(int *pnResolution)

None
pnResolution FULL =0,
HALF =1,
QUARTER = 2,
EIGHTH = 3, // not yet supported

SetResolution

Description

Syntax
Parameters

Input

Output

Sets the resolution used for the Preview screen. The FULL parameter (0) gives the
maximum sensor output from the camera. All other resolutions are subsets of this
FULL output.

SetResolution(int nResolution)

nResolution FULL =0,

HALF =1,

QUARTER = 2,

EIGHTH = 3, // not yet supported
None

GetCaptureResolution

Description

Syntax

Parameters
Input
Output

Returns the current resolution of the camera’s output.

GetCaptureResolution(int *pnResolution)

None
pnResolution FULL =0,
HALF 1,
QUARTER = 2,
EIGHTH = 3, // not yet supported.

17

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

SetCaptureResolution

Description Sets the resolution used for the camera’s output.
Syntax SetCaptureResolution(int nResolution)
Parameters
Input nResolution FULL =0,
HALF =1,
QUARTER = 2,
EIGHTH = 3, // not yet supported.

Output None

Setting ROI (Region of Interest) and FOV (Frame of View)

You can request a specific area of the frame as an output from the camera.

The picture remains in the same resolution, but a smaller subset of the entire
frame is sent to the PC. The SetRegion and GetRegion commands control the ROI
requested from the camera. From the captured frames sent to the PC, you may
only want to display a partial section — SetView and GetView control the specific
FOV to be displayed on the PC.

GetRegion

Description Gets the coordinates of the region (ROl — Region of Interest) programmed in the
registers of the camera.

Syntax GetRegion(int *startX, int *startY, int *width, int *height)

Parameters

Input *startX X coordinate value (column number) for region's left side

*startY Y coordinate (row number) for region's top row
*width Width in pixels from startX
*height Height in pixels from startY

Output None

SetRegion

Description Sets the region (ROI - Region of Interest) to be output by the camera.

Syntax SetRegion(int startX, int startY, int width, int height)

Parameters

Input startX X coordinate value (column number) for region's left side

startY Y coordinate (row number) for region's top row
width Width in pixels from startX
height Height in pixels from startY

Output None

18

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

GetView

Description
Syntax
Parameters

Input

Output

SetView

Description

Gets the coordinates of the FOV (Frame of View) displayed on the PC.
GetView(int *startX, int *startY, int *width, int *height)

*startX Pointer to X coordinate value (column number) for view's left
side

*startY Pointer to Y coordinate (row number) for view's top row

*width Pointer to width in pixels from startX

*height Pointer to height in pixels from startY

None

Sets the FOV (Field of View) to be displayed on the PC.

Syntax SetView(int startX, int startY, int width, int height)
Parameters
Input startX X coordinate value (column number) for view's left side
startY Y coordinate (row number) for view's top row
width Width in pixels from startX
height Height in pixels from startY
Output None
Binning
Binning takes place when rows and columns are skipped (in HALF and QUARTER
resolutions). The rows/columns displayed are average with the skipped
rows/columns. The picture should be a bit smoother but the FPS is similar to that
of a FULL a frame (which means a lower FPS value).
SetBinning

Description

Syntax
Parameters

Input

Output

Sets whether binning should be used for preview (if HALF or QUARTER resolution is
selected).

[This option is not yet supported]
SetBinning(bool bBinning)

bBinning true use binning for preview
false = don’t use binning (default)

None

19

Camelot Cameras - API Chapter 5 - Accessing the Camera and Parameters

SetCapBinning

Description Sets whether binning should be used by the sensor for video output (if HALF or
QUARTER resolutions is selected).
Syntax SetCapBinning(bool bBinning)
Parameters
Input bBinning true = use binning for video output

false = don’t use binning (default)

Output None

Snapshot Mode

When the camera is in Snapshot mode it stops outputting frames until an
external trigger is set. Each time the trigger is tripped a snapshot is performed
(displayed on SampleApplication video screen). You can order Camelot cameras
with an optional external trigger.

EnterSnapShotMode

Description Enters or leaves Snapshot mode. When in SnapshotMode the camera stops
capturing and streaming video until a trigger is set.

Syntax EnterSnapShotMode(bool snapshotMode)

Parameters

Input snapshotMode true = Snapshot mode is ON
false = Snapshot mode is OFF

Output None

GetSnapShot

Description Imitates the optional external trigger and instructs the camera to capture one
frame and send it to the PC.
Syntax GetSnapShot(bool flash)
Parameters
Input Fflash true = use the external flash (optionally supplied with

camera) when snapshot is triggered
false = don’t use flash

Output None

20

Chapter 6

Advanced API Functions

IMPORTANT NOTES

BEWARE the UpdateFW function writes control data to the camera - an
operation that could render it non-functional if an invalid custom LDR
file is being used.

You can use the UpdateFW function to update to newer, validated
versions of the firmware available on our website.

In order to check a new *.Idr file that has not yet been validated by us at
ID, please contact us so we can run it for you to assure the camera will
boot after loading your file.

UpdateFW

Description
Syntax
Parameters

Input

Output

Return Values

Updates the camera Firmware.
UpdateFW(char* a_sFileName)

a_sFileName Valid file name of type *.ldr— must exist and must be in
correct analog loader file format.

None

S _OK 0 — updated successfully

S_FALSE 1 — camera FW was not updated successfully

21

Camelot Cameras - API Chapter 6 - Advanced API Functions

UploadLUT

Description Uploads a look-up table (LUT) for translating raw pixel values in the camera before
being outputted. The LUT can translate from 8-bit, 10-bit or 12-bit data to 8-bit,
10-bit or 12-bit output. In this version only translations to 8-bit data are supported,
which is transmitted in the output. Once a LUT is loaded, the camera uses it to
translate all outgoing frames.

After the LUT is successfully loaded, the SampleApplication must reinitialize the
camera and run it.

Syntax UploadLut(char* a_sFileName, int a _numBits, bool a_transform)
Parameters
Input a_sFileName Valid file name — must exist. Each value should be on a
separate line.
a_numBits 8, 10, or 12

For 8 bits, 256 values are expected in the file.
For 10 bits, 1024 values are expected in the file.
For 12 bits, 4096 values are expected in the file.

a_transform Whether values should be transformed since 8 MSB are in
lower byte. Should be true.

Output None

Return Values S OK 0 — uploaded successfully

S_FALSE 1 — LUT was not uploaded successfully

22

Camelot Cameras - API Chapter 6 - Advanced API Functions

SetTestData

Description Specifies whether the camera should output set Test Data or regular video images.
This is an option provided for developers to check whether the data received is
actually the data sent and other sensor independent features.

1.3Mp and 3Mp cameras have only 1 option — to choose a value which will
be output for even columns, and its complement value - for odd columns.
For example, 0x12 becomes OxED.
For 5Mp cameras this is type=4 and you can create patterns and change the RGB
values.
Syntax SetTestData(bool useTestData, int type,
int redData, int greenData, int blueData, int barWidth)

Parameters

Input useTestData true — use Test Data
false — don’t use Test Data

type Only applicable for 5Mp sensor.
Values 0-8.
0 - Color Field (Normal Operation — like 1.3Mp and 3Mp)
1 - Horizontal Gradient
2 - Vertical Gradient
3 - Diagonal Gradient
4 - Classic Test Pattern
5 - Marching ones
6 - Monochrome Horizontal Bars
7 - Monochrome Vertical Bars
8 - Vertical Color Bars
For detailed description, see Micron’s
See Links to Micron Data Sheets on page 1

redData Value for R pixel (in 5Mp).

Value for Test Data in 1.3Mp and 3Mp — is output and then its
compliment in a pattern.

greenData Value for G pixel (in 5Mp).
blueData Value for B pixel (in 5Mp).
barWidth Width of bars if type 6, 7, or 8 should be an odd number

Output None

23

Camelot Cameras - API Chapter 6 - Advanced API Functions

SetDataCBPtr

Description Sets the callback function that is called every time a new frame is received, if
specified.
Syntax SetDataCBPtr (funcDataPtr funcPtr)
Parameters
Input funcPtr A pointer to an existing function of type

void func(unsigned char *rawDataPtr, int size,
FRAME_TYPE frameType)

In the Camelot implementation, FRAME_TYPE is one of the

following:
BAYER_8 BIT = 10, // regular raw File
BAYER_RAW = 11 // 8, 10 or 12 bit
raw, Full data
RGB_24 = 13 // BMP using RGB24

In the CameloSample, this function is implemented with the
placeholder function

DataCallback(unsigned char *dataPtr, int size,
FRAME_TYPE type), which can be found in
Cbfunctions.cpp. The user may edit or replace this do-
nothing placeholder function as appropriate.

WARNING: This function must be performed quickly so
as not to interfere with the frame rate.

Output None

SetRawFrameDataCB
Description Sets whether a callback function should be called for each raw frame is received.
Syntax SetRawFrameDataCB (bool useCB)
Parameters
Input useCb Whether this callback function should be set.

Output None

SetRawFullFrameCB

Description Sets whether a callback function should be called for each raw Full frame received
(as a result of the SetGetRawFullData function on page 26).
Syntax SetRawFul IFrameCB (bool useCB)
Parameters
Input useCb Whether this callback function should be set.

Output None

24

Camelot Cameras - API Chapter 6 - Advanced API Functions

SetRGBFrameDataCB

Description

Sets whether a callback function should be called after each raw frame has been
processed into an RGB frame.

Syntax SetRGBFrameDataCB (bool useCB)
Parameters
Input useCb Whether this callback function should be set.
Output None
SetPlIRate

Description

Syntax
Parameters

Input

Output

Sets the camera’s PLL (internal clock) rate.
Default: 96MHz.
This option is not supported by the 1.3Mp and the 3Mp models.

Before uploading and using a LUT with 12-bit streaming, the 5Mp camera must be
set to 48MHz. Also, if a RAW frame is to be captured with 12-bit data, change the
camera PLL rate to 48MHz before frame capture.

SetPlIRate(int pllIRate)

pllRate Sets the internal clock in MHz.
Values must be in the range of 1 — 96.
In this release only 48 and 96 MHz are supported.

None

SetPwmTimer

Description

Syntax
Parameters

Input

Output

Sets three PWM (pulse width modulation) timers which you can attach to
peripherals (LEDs, etc.) that need PWM controlled current source. The period is the
overall cycle, while the width is the duration of the period (duty cycle) where the
signal is low. The width must be less than the period for each timer. The timers
(TMR1, TMR2 and TMR3) are started simultaneously and therefore synchronized.

SetPwmTimer (PWM_API pwmTimer)

PWM_API PWM_API struct which is defined as:
unsigned int Timerl period; // TMR1 period
unsigned Int Timerl width; // TMR1 width
unsigned int Timer2_period; // TMR2 period
unsigned int Timer2_width; // TMR2 width
unsigned int Timer3_period; // TMR3 period
unsigned int Timer3_width; // TMR3 width

None

25

Camelot Cameras - API Chapter 6 - Advanced API Functions

SetGetRawFullData

Description Sets mode for getting RAW frames. For 5Mp camera only: If a 12-bit RAW frame is
required, put the camera into 48MHz mode (using the SetPlIRate function) before
requesting the RAW frame.

Syntax SetGetRawFul IData(bool getRawFul IData,

int a_numBits,
bool a_Resolution,
bool withLUT,

int a_numFrames)

Parameters

Input getRawFul IData true — set RawFull data mode (FULL capture resolution
regardless of preview resolution)false — revert back to
preview resolution

a_numBits Number of RAW data bits used internally for camera capture
a_Resolution RAW frame Resolution.
Default is FULL - Other resolutions not yet supported.
FULL =0,
HALF =1,
QUARTER = 2,
EIGHTH = 3, // not yet supported.

withLUT Use a LUT before data is sent to PC. This option is only
available if a LUT has been loaded to the camera.

a_numFrames Number of frames captured.
More than 1 frame is not currently supported.

Output None

26

Camelot Cameras - API Chapter 6 - Advanced API Functions

GetGPIO

Description

Syntax
Parameters

Input

Output

SetGPIO

Description

Syntax
Parameters

Input

Output

Gets the current state and values of the 4 GPIO (general purpose input/output) pins
that are reserved for your use. These pins can either be an input or an output,
which means they either read a value from the camera, or set a value into the
camera. Cameras can be optionally wired so that these GPIO pins can turn on/off a
circuit or transmit info from the camera.

GetGPI0(GPIO_API *gpioApi)

*gpioApi A pointer to a GPIO_API struct which is defined as:
int GPIO_O_state; //0 = Input(read),l = Output(set)
int GPIO_O_value; //if input - read,if output - set

int GPIO_1 state; // O - Input (read), 1 - Output

(set)

int GPIO_1 value; // if input - read, if output -
set

int GPIO_2 state; // O - Input (read), 1 - Output
(set)

int GPIO_2 value; // if input - read, if output -
set

int GPIO_3 state; // O - Input (read), 1 - Output
(set)

int GPIO_3 value; // if input - read, if output -
set

None

Sets the current state and values of the 4 GPIO (general purpose input/output) pins
that are reserved for the user. These pins can either be an input or an output —
which means they either read a value from the camera, or set a value. Cameras
can be optionally wired so that these GPIO pins can turn on/off a circuit or transmit
info from the camera.

SetGPI0(GP10_API gpioApi)

gpioApi A GPIO_API struct which is defined as:
int GPIO_0O_state; //0 = Input(read),1 = Output(set)
int GPIO_0 value; //if input - read,if output - set
int GPIO_1 state; // O - Input (read), 1 - Output

(set)

int GPIO_1 value; // if input - read, if output -
set

int GPIO_2 state; // O - Input (read), 1 - Output
(set)

int GPIO_2 value; // if input - read, if output -
set

int GPIO_3 state; // O - Input (read), 1 - Output
(set)

int GPIO_3 value; // if input - read, if output -
set

None

27

Camelot Cameras - API Chapter 6 - Advanced API Functions

EnableSensorLight

Description

Syntax
Parameters

Input

Output

Turns on LEDs on the Sensor board. These can be optionally supplied with the
camera. If Flash option is enabled when Snapshot is chosen, the LEDs light
whenever a snapshot is taken.

EnableSensorLight(bool l1ightOn)

lightOn true — lights are turned on
false — lights are off

None

AdjustFlicker

Description

Syntax
Parameters

Input

Output

Adjusts the Shutter Width in order to avoid the 50Hz or 60Hz flicker experienced
when using indoor lighting.

AdjustFlicker(bool adjust, int fregHz)

adjust true — turns on this feature — whenever Shutter Width is modified,
it will be changed to adjust the flicker
false — no adjustment made for flicker

fregHz For which frequency should the flicker be adjusted? Values: 50, 60
None

SetExposureTime

Description

Syntax

Parameters
Input
Output

Sets the exposure time (in milliseconds) for each frame. If the value given is lower
than the camera can operate at, the camera operates at its minimum exposure
time.

SetExposureTime(int expTime)

expTime number of milliseconds for exposing each frame

none

28

Camelot Cameras - API Chapter 6 - Advanced API Functions

CheckLeds

Description

Syntax

Parameters
Input
Output

GetLogs

Description

Syntax

Parameters
Input
Output

Checks whether the three external LEDs, Red, Green and Blue (optionally provided
with the camera) are functioning.

int CheckLeds(Q)

none

int An OR-ed value representing which LED is
malfunctioning. A value of 0 means all LEDs are
working properly.

1 — LED 1 is not working
2 — LED 2 is not working
4 — LED 3 is not working

Gets log messages saved in the camera and used for debugging purposes. These
messages are sent to a separate DebugPrint screen that can optionally be used to
debug applications. See also Using DebugPrint on page 31.

GetLogs(Q)

none

None

GetRegVal

Description

Syntax

Parameters
Input

Output

Returns value of specified register.
GetRegVal (int nRegAddr, int *pnRegVal)

nRegAddr Register number
pnRegVal value

29

Camelot Cameras - API Chapter 6 - Advanced API Functions

SetRegVal

WARNING

This function can change register values to undefined or inadvisable
values. This could cause the camera to malfunction or hang. Refer to

Micron Data sheets for a full description of all registers and values. See
Referenced Documents on page 1.

Description Sets specified register value.
Syntax SetRegVal (int nRegAddr, int nRegVal)
Parameters
Input nRegAddr Register number
nRegVval Value to be set. Micron registers are 16-bit (2 bytes) so

values range from 0-65535. Not all values are valid for
each register — please read sensor data sheet before
changing register values.

Output None

30

Chapter 7

Using DebugPrint

This section describes how to use a separate window for sending debug
messages while the application is running.

Include BDRdebug.h in your project.
Run the application in DEBUG mode.
Open the BDR_debugger window by running BDR_debugger.exe.

BDR_debugger.exe is included on the Installation CD.
4. In the code, call the DebugPrint(msg) function with an ASCII message as
a parameter.

The message is displayed in the BDR_debugger window and logged into a
file by time and date.

DebugPrint
Description Prints a message to a debug window (if open) while in DEBUG mode.
Syntax DebugPrint(char * Str)
Parameters
Input *Str Char string — ASCII message to be printed

Output none

31

Imaging Diagnostics | |

Total vision solutions

FiBDR qnpqgﬂ

a member of the =

